
Compositional Specification of Software Architecture

John Penix

Automated Software Engineering Group

NASA Ames Research Center

M/S 269-3

Moffett Field, CA 94035

jpenix@ptolemy, arc. nasa.gov

Abstract

This paper describes our experience using parameterized al-

gebraic specifications to model properties of software archi-

tectures. The goal is to model the decomposition of re-

quirements independent of the style used to implement the

architecture. We begin by providing an overview of the role

of architecture specification in software development. We

then describe how architecture specifications are build up

from component and connector specifi('ations and give an

overview of insights gained from a case study used to vali-

date the method.

1 Introduction

Existing formal models of software architecture are mainly

concerned with formalizing specific architectural styles such

as pipe-filter and client-server [1, 8, 12]. While architectural

styles abstract away some implementation details, each still

represents a highly reduced subset of the space of possible

system designs. The reduction of the design space is what

makes a style usable by human designers. However, the

fact that the space is reduced indicates that the choice of

an architectural style is an important design decision that

should not be made prior to initial requirements specifica-

tion. The alternatives for decomposing the system require-

ments should drive the selection of a specific architectural

style.

In previous work, we described tlw role of declarative

architecture specifications in system design [11]. Formally,

an architecture specification is a parantet erized specification

where the parameters correspond to 'sockets' where compo-

nents can be 'plugged-in' to the architecture. An architec-

ture specification contains axioms that specify constraints

on the component and system specifications. They may

specify component behavior that is necessary to guarantee

correct system-level behavior or define how variation m com-

ponent behavior affects the behavior of the system. Addi-

tionally, you can state assumptions that the component can

make about the environment provided by the architecture.

The system decomposition described by an architecture

specification is implemented via an architecture schema writ-

ten in a target programming language or architecture de-

scription language. The correctness of the implemented sys-

tem requires that the constraints placed on the system by

the specification axioms are guaranteed by the architecture

schema. This can be verified based on a semantics of the

target language [7, 11]. The key point is that verification of

basic architectural properties is separated from the verifica-

tion of specific system instantiations.

2 Compositional Architecture Specifications

A limitation of our previous work was that the specification

of architecture constraints was monolithic. We have been in-

vestigating approaches to construct these architecture spec-

ifications from parts. One benefit of using a theory-based

specification notation is that large specifications can be built

up from smaller specifications using extension and param-

eterization I4, 6]. Therefore, we define theories for various

kinds of connectors and bindings and they can be combined,

extended and instantiated to create an architecture specifi-

cation.

2.1 Component Specifications

We currently use a simple pre/post condition model of com-

ponents. We are exploring more complex component (and

connector) models to allow the approach to better support

concurrency. However, the method of structuring specifica-

tions is independent of the component model. Therefore,

the pre/post specifications are sufficient to explore the com-

positional specification approach.

2.2 Connector Specifications

A connection associates an output port of one component

with an input port of another component. In general, the

goal is to specify that the combined behavior of two compo-

nents is always defined, i.e., every valid output at the source

is a legal input at the destination. Tho specifics of this re-

lationship depend upon the way that the components are

connected.

For example, a Data Flow connector relates the output of

one component directly to the input of another component.

The verification condition for this type of connection is:

Vx, w IA(x) A OA(x,w) _- Iu(W)

If this condition is true, then given a legal input to A, all

valid outputs of A are legal inputs to B. We use this condi-

tion to create a generic data flow conm,:tion specification.

The specification is parameterized on the interface specifi-

cations of the two components being (-o_mected. Specifica-

tion have also been constructed for bufler,_d, conditional and

feedback connectors [9].

2.3 Interface Binding

To view a collection of interconnected components as an

architecture, it must be associated with a single system in-

terface. This is done by binding the inputs and outputs of

the system interface with inputs and outputs of the subcom-

ponent interfaces. There are several types of bindings that

can be specified and used in an architecture specification.

For example, the axiom:

VX ISYSTEM(X) :=_ [COMP,),_ENT(X)

specifies the correctness requirement when all of the system

inputs are connected to all of the inputs of a single compo-

nent. This specification is parameterized on the precondi-

tion of the system and the precondition of the component.

2.4 Architecture Specification

Architecture specifications are constru,:l ('d by combining and

extending component, connector and binding specifications.

For example, Figure 1 shows a block diagram of an architec-

ture for the Find problem. This architecture is represented

by the specification diagram [6] in Figure 2. There are input

bindings between a component specification and the prob-

lem specification for each of the input variables. The two

components are connected by a data flow connector from

the output of the first component to an input variable of

the second component. The soundzwss axiom states the

condition that must be true for the omtponent behavior to

properly implement the system level behavior. In this case,

the soundness axiom has the form:

I((a, k)) A OA (a, c) A OB ((C, k), :::)) =_ O((a, k), z)

true

!

[true

a_ i so_
i

I
k!

1
[

Find z. key=k A
element(z,c)

bag(a) = bag(c) A
ordered(c)

] z.key=k A
ordered(c) element(z,c)

c I
Binary

" , Search [

Z

Figure 1: Example Find Architecture

where I and O are the system level specification and OA

and Ou are the postconditions of the two components. The

generic problem and component specifications, together with

the soundness axiom, represent the generic architecture the-

ory, labeled Partial Sequential in the diagram. By plug-

ging in the Find problem specification and the Sort and

BinSearch component specifications, the specialized Find

Architecture is created.

3 Case Study: KWIC

The Keyword In Context (KWIC) indexing system has been

used as an example to present software architecture con-

cepts. Shaw and Garlan's book [12] contains four solutions

to the problem that have different architectures. The differ-

ent architectures represent various combinations of choices

regarding the tradeoffs on issues such as reusability, adapt-

ability, performance. The goal of this case study was not

to define a new architecture for KWIC, but to describe the

existing KWIC architectures using compositional specifica-

tions. Details of the case study can be found elsewhere [9].

Traditionally, the KWIC problem is solved using the fol-

lowing four components: Input, Circular Shift, Alphabetize,

and Output [12]. Our approach to specifying the KWIC ar-

chitectures is to specify the interface and behavior of these

four components, and then integrate them into the different

architectures. The integration is non-trivial becanse, in the

different architectures, the components have slightly differ-

ent interfaces. We attempted to separate the specification

of the core component functionality from the specification

of component interaction. Then the core components were

integrated using wrappers (specified as one-component ar-

chitectures). The different interaction styles were captured

by the connector constraints.

For example, a specification diagram for the KWIC data

flow architecture is shown in Figure 3. The sub-diagram

in the lower left shows how an incremental shift component

is wrapped to create a Shift component with the correct

¢- I

lnputBindingVarVar b

J _t I

_ ,
Problem Component Component i Soundness

I\ /L\ /[_,om

--t---'-"_;!'_!_!_"-_....t----7-_7-°:....1-.....
Find SortComponent BinSearchComponent Partial

Sequential

FindArchitecture

Figure 2: Specification Diagram for Find Architecture

Ir i

I I

,, Problem Comp_ment Component Component Component J,

'i',' _ / _ / _ / "_ / ,_--_ SoundnessAxiom,

,: InputBindingTotal [l)FConnector | DFConnector [DFConnector

KWIC lnputComptment ShiftComponent AplhaComponent OutputComponent 4StagePipeArch

SolutionDF

Component _ MapFlattenWrapper

Shiftlncremental

Component _ ShiftMapFlatten
...........................

Figure _: Specification Diagram for KWIC Data Flow Architecture

interface.

The second architecture we described was the reactive ar-

chitecture, where components do not wait for the previous

component to finish processing, but operate incrementally.

For this example, it was necessary to specify an incremental

version of the Alphabetize component. The original Alpha-

betize component could be built using an incremental ver-

sion and a wrapper. However, this unnecessarily limits the

sorting algorithm to insertion sort, pointing out a tradeoff

between the data flow and reactive ar,'hitectures: the per-

formance gained by the concurrent exe(ution of components

in the reactive style results in a potenlial performance loss

as a result of limiting the sorting algorithm.

This experience also pointed out the importance of wrap-

pers in component integration. We believe that it may be

useful to consider wrappers as first cla.s_ ontities in an archi-

tecture description language.

4 Related Work

This approach to architecture modeling _irose out of an ef-

fort to model component adaptation tactics within the RE-

BOUND framework [9, 10]. The architecture specification

method (in it's monolithic form) was t(,sted on the architec-

ture of an AI-based control system for a de.ep-space probe [11].

Most efforts to formalize software architecture are tar-

geted at formalizing styles and not with the problem decom-

position aspects of architecture. Two approaches use alge-

braic theories to specify architectures. Marconi et. al. [8]

use theory-based architecture represenlations to support ar-

chitecture refinement. This work is conc_rned with architec-

ture implementation and could be used to specify links be-

tween architecture specifications and architecture schemas.

Gerken [5] also uses theories as the main unit of specifi-

cation. We believe that the process logic descriptions of

architectures are too operational to eff,,ctively model the re-

lationships we are interested in.

5 Future Work

We are currently experimenting with a more general compo-

nent model that will provide better support for concurrency

and event-based communication. We ar_ attempting to bal-

ance the expressibility of languages lik,, Wright [2] (based on

CSP) with the need to model requirements without imple-

mentation bias. We are also interested in mapping compo-

nent and connector implementations onto commercial coin-

ponent platforms, such as JAVA beans. This could provide

a reliable method for NASA to use COTS components in

critical systems, by formally verifying a reference architec-

ture for flight-critical applications built on top of a reliable

platform.

References

[1] Gregory D. Abowd, Robert Allen, and David Garlan.

Formalizing style to understand descriptions of software

architecture. A CM Transactions on Software Engineer-

ing and Methodology, 4(4), 1995.

[2] R. Allen and D. Garlan. Formalizing Architectural Con-

nection. In Proc. Sixteenth International Conference on

Software Engineering, pages 71-80, May 1994.

[3] Ted J. Biggerstaff and Alan J. Perlis, editors. Software

Reusability - Concepts and Models, volume 1. ACM

Press, 1989.

[4] R. M. Burstall and J. A. Goguen. Putting theories

together to make specifications. In IJCAI5, pages 1045-

58, 1977.

[5] Mark J. Gerkin. Formal Foundations for the Specifi-

cation of Software Architecture. PhD thesis, Air Force

Institute of Technology, March 1995.

[6] Richard J/illig and Yellamraju V. Srinivas. Diagrams

for software synthesis. In The Eight Knowledge-Based

Software Engineering Conference, pages 10-19. IEEE,

September 1993.

[7] Michael Lowry, Klaus Havelund, and John Penix. Veri-

fication and validation of AI systems that control deep-

space spacecraft. In Proceedings of the lOth Interna-

tional Symposium on Methodologies for Intelligent Sys-

tems (ISMIS'97), oct 1997. Invited Paper.

[8] Mark Moriconi, Xiaolei Qian, and Bob Riemenschnei-

der. Correct architecture refinement. IEEE Trans-

actions on Software Engineering, 21(4):356-372, April

1995.

[9] John Penix. Automated Component Retrieval and

Adaptation Using Formal Specifications. PhD thesis,

University of Cincinnati, April 1998.

[10] John Penix and Perry Alexander. Toward automated

component adaptation. In Proceedings of the Ninth

International Conference on Software Engineering and

Knowledge Engineering, pages 535-542. Knowledge

Systems Institute, June 1997.

[11] John Penix, Perry Alexander, and Klaus Havelund.

Declarative specification of software architectures. In

Proceedings of the 12th International Automated Soft-

ware Engineering Conference, pages 201-209. IEEE

Press, nov 1997.

[12] Mary Shaw and David Garlan. Software Architecture:

Perspectives on an Emergin 9 Discipline. Prentice Hall,

1996.

